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I
A FORTRAN COMPUTER PROGRAM FOR CALCULATING

THE PROPAGATION OF PLANE, CYLINDRICAL, OR SPHERICAL
FINITE AMPLITUDE WAVES

INTRODUCTION

II
Several adequate theories [1,2,3], based on approximations to the

nonlinear wave equation, have been developed to describe the behavior of a

one-dimensional wave of moderate amplitude as it propagates through a nonlinear

fluid. Most of these theories, however, are not conveniently applied to the

problem of describing the propagation when the wave is of arbitrary initial

waveform or when the linear absorption has an arbitrary frequency dependence.

To handle these more general case:, investigators [4,5,61 have adapted the

phenomenological model of Fox and Wallace [71 to use a high-speed computer

to calculate the propagation stepwise. The distance of propagation in this

model is divided into small intervals. The wave is first allowed to distort
over one interval and is then corrected to account for absorption and geometrical

spreading. The procedure is then repeated for the new waveform over the next

interval. The use of small intervals preserves the interaction between the

distortion, the absorption, and the geometrical spreading mechanisms. Since

the distortion mechanism is applied in the particle velocity domain with

absorption and geometrical spreading being applied in the frequency domain,

it is necessary to switch back and forth between the two domains during each

step. Even with the use of the Fast Fourier Transform (FFT), this procedure

is a time-consuming process. In addition, one must take special care in

applying the distortion mechanism when the waveform has a very steep shock-like

portion.

We describe in this report a new procedure for calculatLng the

propagation of plane, cylindrical, or spherical finite amplitude waves.

This procedure performs the stepwise calculations entirely in the frequency

domain, thus avoiding both the use of the FFT and the steep waveform problems.

We also describe a FORTRAN computer program called FAW that implements the

new procedure.

The theory behind the procedure is described in Sec. I. A discussion

of the relative importance of linear absorption and nonlinear effects is

presented in Sec. II. In Sec. III the numerical implementation of the procedure

Manuscript bubmitted November 24, 1980.
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is developed. This is followed in Sec. IV b3 a description of the computer

program FAW. Included are discussions of the significant FORTRAN variable

names, the major computational blocks, parameter input, printed output,

number of harmonics required in the calculation, and initial step size.

Section V contains a comparison of results obtained using the new procedure

with results obtained using the phenomenological model. The report concludes

with appendices containing sample output and a program listing of FAW.

I. THEORY

An approximate nonlinear wave equation valid for one-dimensional and

progressive plane, cylindrical, and spherical waves in a lossless fluid

is the generalized Burgers' equation [8]

U U
+ (a/r)U - bU _ = 0, ()

where U = particle velocity,

r = spatial coordinate,r
T = retarded time (t --r

co  small signal sound speed,

2
b = /c2

0
B

= (i + ), the nonlinearity parameter, and

a = 0 (plane waves),

= 1/2 (cylindrical waves), or

= I (spherical waves).

Equation (1) is modified to include linear absorption by noting that in the
absence of nonlinearity the amplitude decays according to

-(r) U (r /r)a exp - ca(w)(r-r )] (2)

or

ar= -(air) U - a(w) U. (3)

2
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DThe first term on the right-hand side of Fq. (3) represents the loss due to

Egeometrical spreading and is already included in Eq. (1). The second term

represents the loss due to linear absorption. Adding this term to Fq. (1)
Vresults in the following nonlinear equation for a lossy fluid with arbitrary

frequency-dependent absorption where dispersion has been neglected:

+ (a/r)U - bU (UI/3T) = - a(W) V1. (A)

We now choose as a trial solution a Fourier series of linear damped waves

of arbitrary phase with amplitudes that are a function of the spatial

coordinate r:

U(r,T) = (r/r)a {CV sin(kwot) + 1k cos(kwot)} expf- ci(r-ro)], (5)

P=I

where ak is the absorption coefficient appropriate for the kth harmonic.

The fundamental frequency w is chosen less than or equal to /t , where T
0 0

is either the period of the initial waveform at r=r when the wpveform is0

periodic or it is a time length sufficiently long to contain the resulting

waveform at all desired distances when the waveform is transient. Substitution

of Eq. (5) into Eq. (4) yields two coupled differential equations governing

the behavior of the amplitude components Gk and 11 as a function of the spatial

coordinate r:

3r sin (kwt0)exp 1--k (r-ro)]

k=l 
0

Accession PFor
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and

CO7

cos (k, T) exp [-ok(r-ro)

k=1

(ro / r ) E m exp (7)
2 0 !mJ

m o in

j(HC + Cell) cos, [((LhiIO0%

+ (Hem - Gem) cosIUE M)w .

Factoring out terms of the same frequency (i.e., terms in which +,m = k,I-m = k, and f-m = -k) results iu

k-I._ Gk b,o  I
k 0 (r°/r)a M(C C -1k  1 - ) exp-(k +--ak) (r-ro)]

,r 2 0 k-n in k-m m k-r n k 0

+ ii (Ck+m' + 11k+m 1 ) exp [(%k4mm-a'k(r-r) (P)

m=-

-E m (GkG + ,lkit )exp [-(cc 4kA -OE r-roIN

m--k+l A

:;and

a"i bw k-I

2 /r) m(k-mm + Gk l) exp [-(ak - O)(r-ro)3}r 02- - -

+ m( IG -G 1 exp - -)(r-r(9)
'knm k4n in ~ & k 0 (9)

CO,

+ 1molm kG C Mk 11 exp 1-Ctm-k +I mk )(r-r 0J

m=k+l
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The first sum on the right-hand side of Fqs. (8) and (9) represents contributions
totekhhroi u oteitrcino oe amnc rdcn u

tth

frequency component at the k harmonic. The second sum in the equations

corresponds to the interaction of higher harmonics Producing a difference
th

I'frequency component at the k harmonic. The last sum in the equations repre- 3

sens te lssto the kt harmonic due to its interaction with all of the harmonics.

Combining the last two sums in Eqs. (8) and (9) yields

bw 
jk- I

(r /r) a m (C. cm I 11mm exp [( a-a)(-o

4ms

(C k k(CkG m ~ ri ex -ak4in m k) r J (10

and 
'

31! bw
0(r /r) m ~ + ' k exp [-am~~~ )(r-r)*

3r 2 0k- - -
m=lI(I

- 1 , exp [-(a +z-k(r-r,)

m= 1

Equations (Ioj) and (11) are the coupled nonlinear equations that are numerically4

integrated to obtain the harmonic amplitudes Gk and 1k as a function of the

spatial coordinate r.

9 H1. RELATIVE JIPORTANCE OF LINEAR ABSORPTION Atli NONLINEAR FFEFCTS

The Goldberg number r is defined asI

r =--(12)
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where a is the absorption coefficienc and £ is the discontinuity distance,

the point at which the waveform would shock if linear absorption were absent.

The discontinuity distance is geometry dependent and for initially sinusoidal

waves is given by

2
e =-0 (plane wave), (13)
p fU W

0 0

2 4
c c

£ =r + o + o (cylindrical wave), (14)
c o 0 a2U 2 200o 4rU

0 0 0

and

£ = r exp (co 2/Wwro) (spherical wave). (15)

If the Goldberg number is greater than unity, the nonlinear effect becomes

important and shocks are likely. In this case, as the waveform approaches the

discontinuity distance, nonlinear effects dominate the loss due to linear

absorption. The amplitudes of all harmonics above the fundamental increase at

the expense of the fundamental. After the discontinuity distance is reached,

however, linear absorption plays an increasingly larger role and eventually the

amplitudes of all the harmonics decrease with distance.

The use of the Goldberg number is important in deciding on the number of

harmonics to retain in the calculation. If the Goldberg number is small compared

to unity, then the nonlinear effect is small and the waveform is not going to

shock. In this case, a small number of harmonics will adequately describe the

|§ waveform at any position. However, if the Goldberg number is large, then shocls

are likely and a large number of harmonics must be retained in the calculation.

A discussion of the relative error associated with the number of harmonics retained

in the calculation is found in Section ME.

6



III. NUMIERICAL IMPLEMENTATION

A. Series Truncation

In order to numerically integrate Eqs. (10) and (II) the infinite

series on the right-hand side of each equation must be truncated in such a

manner that no instability is introduced intn the algorithm. This problem can

best be examined by assuming that the phase of the initial waveform is such

that all the amplitude coefficients If are zero and that j harmonics are retained
k

in the calculation. This results in Eq. (11) vanishing and Eq. (10) reducing

to

ac bw k-
k (r /r ia
3( / 2 m C rk Cm [-(ak-I*-ak)(r-r

j-k (16)

-k in~ exp [(k
m= l

The simple truncation used in obtaining Eq. (16) is insufficient when

an attempt is made to examine the propagation of the waveform beyond the dis-

continuity distance. In calculating the propagation, the flow of energy fro

lower to higher harmonics stops with the last harmonic retained in the series.

This is obvious from the fact that the second series in Eq. (16) vanishes for

th
the harmonic. Thus the use of simple truncation eliminates the primary

th
nonlinear energy-loss mechanism of the last (j ) harmonic. The harmonics

preceding the last are affected in a similar, but less severe, manner. The

calculated values for t:ie last harmonics become abnormally large relative to

the lower harmonics. Being "toc large", these harmonics then cause an abnormal

growth of the next lower harmonics so that eventually even the lowest harmonics

are significantly in error. This instability is circumvented in the program by

I artificially increasing the loss of the last few (and least significant) harmonics

by requiring that their amplitudc never exceed the amplitude of the next lower

harmonic.

7&



B. Integration Mlethod

Equations (10) and (11) are stepwise numerically integrated by the

first-order Runge-Kutta method to obtain the amplitudes of the harmonics at

progressively increasing distances. This method, as applied to the numerical

solution of the problem

Ck
R ,P (17)

k - r = Rk(r, C, 1!)

and

k Dr Sk(r, C, 11) ()

yields the amplitudes at the r+I h step as

i
and

:!k(N+I) I !k( 1Z) +2 [" t)+1.(~I],(0
+ +

where

k k
[I(N) = Rk Fr(N), C(I), l():, (21)

Ck(N+I) =Rk !r(NI), C(F) + ) '(F) + h!(r),I
r : r(N), C(t9, '(N)1, (2?) '

Ik " c£( ) --% !r(+ ), (r) + ,re(r,), ,,qr) + h,,'(ry), (74) ii

kI ) = S Jr(f41) C(.) + hc(N) l') + h' (,), (21) -

.. . .-- _ _ . . . , , _ , . . . .- - - - _ _ - ' - - - _: -



IMIN

and h is the incremental step size [91. This procedure has the advantage of

not requiring the calculation of any derivatives of R and Sk as would be

necessary in a Taylor-series expansion. The procedure also allows the step ZO

size to be easily changed at any point in the calculation. The only disadvantage

is that the right-hand sides of Eqs. (17) and (18) must be evaluated twice

at each step.

C. Variable Step Size

I
In calculating the propagation of a finite amplitude wave it is desirable im

to use the largest step size that will produce accurate results. During the t

initial portion of the propagation, when the waveform is undergoing its most

rapid change due to nonlinear effects, a small step size is required. After

the discontinuity distance is reached, however, the nonlinear effects become

less pronounced and the step size can be increased. In order to minimize the

running time of the computer program, both under these circumstances and on

occasions when an overly conservative initial step size has been chosen,

a variable step size feature is incorporated.

This feature doubles the step size whenever the average percentage

change in the amplitude components JAC.I/GjI and IAH /P14, j= 1, 2, k .. ,

over the previous step is below some arbitrary value c. The integer k is the

number of harmonics printed in the output and is generally less than the number

of harmonics retained in the calculation. There are two methods for controlling

the doubling of the step size. Either the internal value C may be modified or the

number of harmonics printed out may be changed.

The narmonics are printed out at fixed distance intervals (pript out

distance interval = specified integer x initial step size). When the step

size is doubled, it is unlikely that the harmonics will be calculated at positions

coinciding with the print-out distance. The program circumvents this problem

by linearly interpolating the output from the calculated values.

I9
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D. Renormalization

One of the standard programing problems associated with numerical

solutions is the limited exponent range of computers. The Advanced SLientific

Computer (ASC) at the Naval Research Laboratory (NRL), for which this program

was written, has an exponent range of -76 to +76. The terms most likely to

exceed this range are the exponentials in Eqs. (10) and (11).

To illustrate this problem the exponentials in Eqs. (10) and (11)

are examined for the case of an omega-squared frequency dependence of the

absorption coefficients (fresh water). The exponential in the second series

on the right-hand sides of Eqs. (10) and (11) may then be written in the form

exp [-(a m +am-k)(r-ro exp [-2m(kHm)al(r-r)], (25)

where cI is the absorption coefficient of the fundamental. Since m and k are

positive integers, the exponential tends to zero with increasing r. This causes

no problem if the computer is told to set underflow to zero (the error

associated with setting numbers smaller than I076 to zero is negligible).

The exponential in the first series on the right-hand sides of Eqs. (10)

f and (11) may be written as

exp [-(a + -)(r-r) exp [+2m(k-m)al(r-ro)]. (26)

Since m is always less than k in the first series, this exponential may exceed i
the upper bound of the exponent range. As an example, when 50 harmonics are

retained in the calcuiation of a 100-kz spherical wave in fresh water

(a, = 2.38 x 10 N/nt), the exponent range of +76 is exceeded at r = 255 m.

This distance is totally insufficient to examine the asymptotic decay of the

spherical waves.

10



A simple method for circumventing this problem is to renormalize the

waveform after each step. In this procedure the source position r is changed

after each step and set equal to the current position r. This limits the size

of the distance term in the exponentials to h, the step size, and merely requires I
t that the amplitudes be transformed as

Ak--Ak [R0 /(R+h)] exp (-akh). (27)

It has the additional advantage of not requiring the calculation of the exponentials

at each step since they do not change and can be stored. If the step size doubles,

the stored values are simply squared.

IV. DESCRIPTION OF COMPUTER PROCRAM FAW

The computer program FAW, which is listed in Appendix A, iq written in

universal FORTRAN and should run on any computer accepting this language.

However, the program has been specifically written to take advantage of the

vectorizing capability of the ASC at NRL.

While the use of the vectorizing option on the ASC greatly reduces the

running time of the program, it does not allow the use of variable ranges on

nested DO loops. This constraint results in FAW running inefficiently on

computers that do not have vectorizing capability. Therefore, it may be

necessary to modify FAW for use on a nonvectorizing computer.

The DO loops, which are modified in FAW for the vectorizing process,

are the loops associated with the two series on the right-hand sides of Eqs.

(10) and (11) (lines 243 to 256 and 320 to 33 in FAW). The first series on AR

the right-hand sides of Eqs. (10) and (11) has an upper limit of k-i for the

kth harmonic. The second series is truncated to an upper limit of j-k for the

kth harmonic when j harmonics are retained in the calculation. Since both of

these limits are a function of the harmonic increment being calculated, the

range of the inner DO loop is not a constant. flowever, the ASC runs quitker



if the loops are vectorized, and to do this the ranges of the two inner loops

have been set equal to J-1. This results in extraneous terms being calculated

and increases the running time on nonvectorizing computers.

The extraneous terms do not contribute to the calcuilation and are all

set equal to zero in the DO loops. This is accomplished by generating a

matrix for each DO loop whose elements are zero for the extraneous terms and

whose nonzero elements are the exponential terms in Eqs. (10) and (11). As

explained !n the section on renormalization, this matrix need only be calculated

once and is then used at each step.H

The remainder of this section describes FAW. Included are a listing

of the significant FORTRAN variable names and descriptions of the major

computation blocks in FAW followed by a discussion of the parameter Input,

printed output, number of harmonics to retain in calculation, and initial

step size.

A. Significant FORTRAN Variable Names

The significant FORTRAN variable names in FAW are as follows:

A Geometrical spreading factor

=0 (plane waves),

1/2 (cylindrical waves),

= I (spherical waves).

th
ALPHA Vector whose I element ALPHA (I) is the absorption

coefficient of the Ith harmonic.

f2

B The constant b a/c in Eqs. (10) and (11).

BETA Coefficient nf nonlinearity.

12



WN

C Small signal sound speed c .

DC Vector containing the differential change of the amplitude

coefficients G. The element DG(1) contains the differential

change hG(N) at the N thstep as given by Eq. (21).

th
DGI Vector whos( I element DeIl) contains the differential

; ; th
charge hG (N+l) at the N+1 step as given by Fq. (21).

DP Vector containing the differential change of the amplitude

coefficients II. The element D110l) contains the differential A

change hI((N) at the Nth step as given by Eq. (22).
IA

th
Dill Vector whose I element Dill(I) contains the differential

th
change hli'(N+l) at the N+I t h step as given by Eq. (24).

DX Current step size.

DXI Initial step size.

E Normalization constant. The output is normalized to the

constant E,which is an input parameter and generally set

equal to the initial amplitude of the fundamental.

Fl Factor from Eqr.(IO) and (11) equal to (ro/r)a.

FREQ Frequency of fundamental.

C Vector whose Ith element contains the amplitude G(i) of

the sine component of the I harmonic.

GH Vector whose It h element M'(1) = exp [-ALPPA (I) * DX].

13



GX Array whose elements are all zero that is used as a buffer

for the working array C,2. In the DO loops which calculate

DG, DGi, DH, and DHI the ranges of the loops have been *1
written to take advantage of vectorization. This results

in negative indices for some of the C2 elements in the

calculation. The GX array is placed before the C2 array to

prevent incorrect results.

th
C2 Array whose I element first contains G() and in later

calculations contains G(1) + DG(I) as required by the

Runge-Kutra method.

Same as C for the cosine elements.

lix Same as GY but placed in front of 112.

!2 Same as C2 for the cosine elements.

IAF Input parameter equal to either zero, if only the absorption

coefficient for the fundamental is input and an omega-

squared dependence for the harmonic absorption coefficients

is used, or one if the absorption coefficient is input for

each harmonic retained in the calculations.

IP Print-out interval = IP * DX.

jNumber of harmonics retained in the calculations.

A

K Number of input C coefficients.

KI Number of input H coefficients.

14
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L Number of externally supplied absorption coefficients M

used to modify the omega-squared dependent coefficients.

~C. T'!,' if IAF =0 and the omega-squared dependence is toI

be modified.

NI Number of harmonics printed to output.

R Spatial coordinate.

RMAX Maximum distance that propagation is to be calculated.

RN Source position. Modified after each step. Set equal to

the present position R as described in section on renormal-

izat ion.

RO Initial source position.

Xl Doubly dimensioned array whose elements X1 (M, N) are unity

if Xl (M, F) is nonzero and zero otherwise.

Xil Array whose elements Xl (N, N) exp ((ALPIIA(M) - )

ALPIIA(N) - APIA (Il-N)) * DX) for H 2 to J and F: I

to M. All other elements are zero.

XZ Doubly dimensioned array whose elements X2 (M, N) are unity

if X22 ( A, F) is nonzero and zero otherwise.

X22 Array whose elements X22 (M, N) = exp ((ALPIIA(M) -

ALPHA(N) - ALPHA (M+F)) * DX) for P = 1 to 3-1 and

V I to J-11. All other elements are zero.

15
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B. Major Computation Blocks in FAW

Descriptions of the major computation blocks in PAW are as follows:

Computation Block Line Number

From To

Initialize all arrays to zero. 29 44

Read first fourteen data cards and 51 13F "

print data to output.

Obtain absorption coefficients. 142 179

Read input waveform and priht waveform 183 199

to output.

Calculate matrix elements of X, 204 221

X1i, X2, and X22 and elements of

vector CH.

Calculate DG and DH, first derivative 243 256

of Runge-Kutta method.

Calculate new amplitudes for second 260 265

derivative.I
Find last five non-zero harmonic 289 308

amplitudes and modify them, if

necessary, to insure that they form

a non-increasing sequence.

Calculate DGI and DHI, second 320 333IFF - derivative of Runge-Kutta method.

16
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Computation Block Line Number

From To

Calculate new amplitudes for current 337 340

position.

Find last five non-zero harmonic 344 382

amplitudes and modify them, if necessary,

to insure that they form a non-increasing

sequence.

Check position for output. 386 386

Interpolate output if output position 390 404

does not coincide with position of

calculated amplitudes.

Standard output (no interpolation 405 408

necessary).

Print output. 409 418

Check step size (if incremental 422 431

change is small, then double step I
size).

Modify waveform for renormalization. 435 438

I
Double step size. 443 454

Next step. 456

17



C. Parameter Input

The input consists of a series of data cards:

Data Card 1: Format D17.10 - FREQ, the frequency of the fundamental.

Data Card 2: Format D17.10 - C, the small signal sound speed in

meters per second.

Data Card 3: Format D17.10 - BETA, the coefficient of nonlinearity.

Data Card 4: Format D17.10 - E, the normalization constant.

Data Card 5: Format D17.10 - DXI, the initial step size in meters.

Data Card 6: Format D17.10 - MIAX, the maximum propagation distance

in meters.

Data Card 7: Format D17.10 - RO, the source size, in meters, for

cylindrical and spherical waves. If a plane wave is being

calculated, RO is not used but a value must be entered.

Data Card 8: Format F5.2 - A, the geometrical spreading factor.

A = 0 (plane waves)

= 1/2 (cylindrical waves)

= I (spherical waves).'I Data Card 9: Format 14 - IAF, the absorption flag. IAF = 0 if the

omega-squared dependence for the absorption coefficients is

being used. IAF = I if all absorption coefficients are

entered on data cards.

Data Card 10: Format 14 - J, the number of harmonics retained inthe calculation.

18



Daa Cd 1: F t 14 I
Data Card 12: Format 14 - K, the number of initial H coefficients entered.

SData Card 12: Format 14 - KI, the number of initial H coefficients entere.d.

Data Card 13: Format 14 - NI, the number of harmonics printed to outi'at.

Data Card 14: Format 18 - IP, the integer multiplicative factor oT

DXI which gives the print-out interval.

If IAF= 0

Data Card 15: Format D17.1O -ALPHA (1), the absorption coefficient

of the fundamental in nepers per meter.

Data Card 16: Format 14 - L, the number of harmonics being modified

from the omega-squared dependence.

Next L Cards: Format 14, D17.10 - These cards contain an integer, right

justified in the first four spaces on the card, specifying the

number of the harmonic followed by the absorption coefficient

for that harmonic.

If 1AF= 1

Data Card 15 to 14+J: Format D17.10 - These cards contain the J absorption

coefficients in order in nepers per meter.

Next K Cards: Format 14, D17.10 - These cards contain a right justified

integer, in the first four spaces, specifying the number of

the harmonic followed by the C amplitude coefficient of Jhat

harmonic in meters per second.

SNxt rT C.ik: ;:,)rmat 14, D17. V) - These cards contain a rlgltt jti ; ;,.,

tqteger, in the first four spaces, specifying the number of

the harmonic followed by the H amplitude coefficient of

that harmonic in meters per second.

19



-Z N

D. Printed Output

A sample output from FAN is shown in Appendix H. The first portion of

the output contains a listing of all input parameters. This allows the input

parameters to be checked for errors and is useful for future reference. The

remaining portion contains the calculated output.

The distance in meters is printed at each output interval followed by

two columns of numbers. The columns are labeled and contain the amplitudes

of the sine and cosine components divided by the normalization constant E.

The number of terms output at each interval is NI, which is a user-specified

parameter. In addition, the step size DX in meters, is printed each time the

step size is doubled. This gives the user useful information on the effects

of varying the step size doubling parameter E and the number of harmonics

printed out NI.

E. Number of Harmonics

A sufficient number of harmonics must be retained in the calculation to

insure a negligibly small error in the highest harmonic of interest. In order

to obtain some measure of the required number of harmonics, the algorithm

was used to calculate the harmonic content of an initially pure sinusoidal

plane wave with a variety of harmonics being retained in the calculation. The

frequency of the fundamental was 2.5 MHz, and the initial pressure amplitude

was 3 atmospheres, which gives a discontinuity distance of 21 cm. Table I

lists the percentage deviations of the resulting amplitudes of the first five

harmonics, at the discontinuity distance, from the values obtained when 40

harmonics were retained. As is obvious from the table, the required number

of harmonics to retain depends on the harmonic of interest and the allowable

error. If the fundamental is the only harmonic of interest, one need retain

no more than seven harmonics in the calculation. On the other hand, an

accurate value for the fifth harmonic may require twenty or more harmonics

to be retained in the calculation.

20
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Table I - 1rct.ntage deviation in the first five harLt.sics
for various numbers of retained harmonics 11

U f I 7 8 9 10 15 20 25 30

I t 0..03 0.1-2 0.02 0.02 0.004 0.0003 0.0002 0.00000

2nd 0.20 0.20 0.10 0.10 0.020 0.0020 0.00030 0.00003

3rd 0.80 0.60 0.50 0.50 0.080 0.0090 0.00100 0.00010

4th 2.40 1.80 1.60 1.50 0.200 0.0200 0.00300 0.00040

5th 4.("0 3.80 3.50 3.40 0.500 0.0500 0.00700 0.00080

F. Step Size

With the ability of the program to double the step size after each step,

it is best to choose the initial step size conservatively and let the program

find the best value. In order to determine a conservative initial value for

the step size, tie choice of step size was investigated for the same 2.5-Tllz

plane-wave case used in the previous section. The step size was not allowed

to double and various step sizes from 1/200 to 1/10 of the discontinuity

distance were used. Table II lists the pecentage deviations of the first

five harmonic amplitudes from the values obtained when the step size was 1/200

of the discontinuity distance. The amplitudes were those at the discontinuity

distance, and forty harmonics were retained in the calculations. The table

indicates that a step size of 1/10 of the discontinuity distance will yield

rresults that are accurate to within the normal experimental error.

F
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Table II - Percentage deviation in the first five harmonics
for various step sizes

(u discontinuity distance) V

ZEA
STEP SIZE

1/100 a 1/50 a 1/20 a 1/10 a[IARP1ONIC

Ist 0.0005 0.0030 0.0200 0.0600

2nd 0.0001 0.0050 0.0300 0.1000

3rd 0.0020 0.0100 0.0900 0.4000

4th 0.0070 0.0400 0.2500 1.1000

5th 0.0100 0.0700 0.5000 2.0000

V. COMPARISON WITH PITENGIENOLOCICAL MODEL

As a test of their validity, Eqs. (10) and (11) were used to compute the

harmonic content of an initially pure sinusoidal 300-1iz plane wave. An omega-

squared frequency dependence of the linear absorption terms was assumed with

the absorption of the fundamental being 1.12 x -6 Np/m. The initial pressure

was 1 atmosphere. This problem was also solved using a computer algorithm

[61 based on the phenomenological model of Fox and Wallace [7]. Figure (1)

illustrates the agreement between the results obtained using the algorithm

presented in this paper, shown as solid curves, and the results obtained using

the phenomenological model, shown as dots. Although only the first four

harmonics are illustrated in this figure, the agreement was equally as good

for higher harmonics.
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APPENDIX A

COMPUTER PROGRAM FAW

I C
2 C
3 C
4 C THIS PROGRAM STEPWISE CALCULATES THE HARMONIC CONTENT
5 C OF A FINITE AMPLITUDE WAVE AS A FUNCTION OF POSITION.
6 C THE INITIAL WAVEFORM MAY HAVE ANY HARMONIC CONTENT
7 C AND ARBITRARY FHASE. THE ABSORPTION COEFFICIENTS MAY
8 C BE EXTERNALLY SUPPLIED OR AN INTERNAL OMEGA SQUARED
9 C ALGORITHM IS SUPPLIED. THE INTERNAL ALGORITHM ALLOWS

10 C MODIFICATION OF ANY OF THE OMEGA SQUARED COEFFICIENTS.
li C THE NUMERICAL INTEGRATION USES THE RUNGE-KUTTA METHOD
12 C AND THE STEP SIZE WILL AUTOMATICALLY INCREASE WHEN THE
13 C CHANGE OVER AN INTERVAL IS SMALL.
14 C
15 C
16 C
17 DIMENSION G(50),GX(50),G2(100) ,H(50),HX(50),H2(100)
18 DIMENSION X1(50,50),XI1(50,50),X2(50,50)
19 DIMENSION X22(50,50),XL(50),XL1(50),GH(50)

20 DIMENSION ALPHA(50) ,DG(50),DG1(50),DH(50) ,DHI(50)

21 DIMENSION KG(5),KH(5)
DOUBLE PRECISION GGX:G2,HHXH2,X1,XllX2,X22,XLXL1

23 DOUBLE PRECISION GHALPHADGDG1,DHDH1,R,C,FREIBETA
24 DOUBLE PRECISION EB,X,F1,DXRMAXRN,Z,Z1,DXIPD
25 DOUBLE PRECISION YRO
26 C
27 C INITIALIZE REGISTERS TO ZERO
28 C
29 DO 110 IB=1,100
30 G(IB)=O.DO
31 GX(IB)=0. DO
32 G2(IB)=O.DO-
33 H(IB)=O.D0
34 HX(IB)=0.D(O

~35 H2 IB)=O.DO

36 110 CONTINUE
37 DO 130 !C=I,50 -4
38 D10 120 I1I'1, 0

39 X1 ( IC, I) =0 .0O
40 XI (IC, ID)= ). 10
41 X2(ICID)=0.l()
42 X22(ICrD)=.DO
43 120 CONTINUE
44 130 CONTINUE
45 C
46 C INFUT DATA
47 C
48 C
49 C FRE(I=FUNDAMENTAL FREQUENCY
50 C
51 REAtI(Stl40)FREQ
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52 140 FORMAT(E(17.i0)P
53 PRINT 150YFREO
54 150 FORMAT(5XYIOHFREQUENCY=PD17.10)
55 C
56 C C=SMALL SIGNAL SOUND SPEED
57 C

58 READ'(514)C
59 PRINT 1609C
60 160 FORMAT(5XY12HSOUND SPEED=tD17.10)
61 C
62 C BETA=COEFFICIENT OF NONLINEARITY(1+B/2A)
63 C
64 READ(5Y140)E4ETA
65 PRINT 170,E4ETA
66 170 FORMAT(5Xp5HBETAvD17#10)
67 C
68 C E=NORMALIZATION CONSTANT (OUTPUT IN D14 RE(E))
69 CA
70 READ(59140)E
71 PRINT 180,E
72 180 FORMAT(5XY23HNORMALIZATION CONSTANT=PD17#10)
73 C
74 C DXI=INITIAL STEP SIZE
75 C
76 READ(57140)t'XI
77 PRINT 190tDXIA
78 190 FOFMAT(5XY18HINITIAL STEP SIZE=PD17.10)
79 C

*80 C RMAX=MAXIMUM PROPAGATION DISTANCE
81 C
82 READ(',jy40)RMAX
83 FRINr 200YRMAX
84 200 FORMAT(5XY17HMAXIMUM DISTANCE=91)17.10)
8s C
86 C RO=SOURCE SIZE(INITIAL POSITION FOR GEOMETRICAL SPREADING)
87 C
88 READ(5yl40)RO
89 PRINT 210PIRO
90 1210 FORMAT(5XY12HSOURCE SIZE=vDl7#l0)
91 C
92 C A=SPREADING FACTOR
93 C =0 (PLANE WAVES)
94 C =1/2 (CYLINDRICAL WAVES)
9i 5 =1 (SPHERICAL WAVES)
96 C
97 READ(59220)A
98 220 FOIRMAT(F5.2)
99 PRINT 230YA
10 230 FORMAT(5Xy17HSH-' REAEIING FACTOR=PFS*.2)

101 C
102 C IAF- FLAG(AE4SORPTION COErFICIENTS)
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103 C =0 (OMEGA SQUARED DEFENDENCE)
104 C =1 (EXTERNALLY SUPPLIED)
105 C
106 READ(5,240)IAF
107 240 FORMAT(14)
108 PRINT 250,IAF
109 250 FORMAT(5X,16HABSORPTION FLAG=?14)
110 C
III C J=NUMBER OF HARMONICS RETAINED IN CALCULATION
112 C
113 READ(5,240)J
114 PRINT 260,J
115 260 FORMAT(5X,2OHNUMBER OF HARMONICS=,I4)
116 C
117 C K=NUMBER OF INITIAL G COEFFICIENTS
118 C KI=NUMBER OF INIlIAL H COEFFICIENTS
119 C
120 READ(5,240)K
121 READ(5,240)KI
122 PRINT 270,K
123 270 FORMAT(5X,23HINITIAL 0 COEFFICIENTS=,I4)
124 PRINi 280rKl
125 280 FORMAT(5X,23HINITIAL H COEFFICIENTS=tI4)
126 C
127 C NI=NUMBER OF HARMONICS PRINTED OUT

128 C
129 READ(5,240)NI
130 PRINT 290,NI
131 290 FORMAT(5X,27HNUMBER OF HARMONICS OUTPUT=,I4)
132 C
133 C IP-FRINT OUT INTERVAL=IP*DX
134 C
135 READ(5,300)IP
136 300 FORMAT(I8)
137 PRINT 310,IP
138 310 FORMAT(5X,19HPRINT OUT INTERVAL=,I8)
139 C
140 C OBTAIN ABSORPTION COEFFICIENTS
141 C
142 IF(IAF) 1110,320,400
143 C
144 C OMEGA SQUARED DEPENDENCE
145 C
146 320 READ(5,140)ALPHA(1)
147 PRINr 330,ALPHA(1)
148 330 FORMAl(5X,9HALPHA(1)=,I)17.10)
149 DO 340 IE=2,.I
150 ALPHA(1E)=IE*IE*ALPHA(1)
151 340 CONTINUE152 C

153 C L=NUMBER OF ABSORPTION COEFFICIENTS BEING MODIFIED
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III

154 C FROM OMEGA SQUARED DEPENDENCE
155 C
156 READ(5,240)L
157 PRINT 350,L
158 350 FORMAr(5X,43HNUMBER OF MODIFIED ABSORPTION COEFFICIENTS=,I4)

159 IF(L)1110,440,360
160 360 PRINT 370
161 370 FORMAT(5X,33HMODIFIED ABSORPTION COEFFICIENTS.)

162 DO 390 IG=I,L
163 READ(5,380)N,X
164 380 FORMAT(14,D17.10)
165 PRINT 380,N,X
166 ALPHA(N)=X
167 390 CONTINUE
168 GO rO 440
169 C
170 C INPUT ABSORPTION COEFFICIENTS
171 C
172 400 PRINT 410
173 410 FORMAT(5X23HABSORPTION COEFFICIENTS)
174 DO 430 IH=1,J
175 READ(5,140)X

176 ALPHA(IH)=X
177 PRINT 420,IHALPHA(IH)
178 420 FORMAT(1X,6HALPHA(,3,2H)=,D1710)
179 430 CONTINUE
180 C
181 C READ INPUT WAVEFORM

182 C
183 440 CONTINUE
184 IF(k)1110t490,450
185 450 PRINT 460
186 460 FORMAT(5X,14HINPUT WAVEFORM)
187 DO 480 IJ=lK
188 READ(5,380)N,X

189 G(N)=X
190 PRINT 470,N,G(N)

191 470 FORMAT(1X,2HG(,13,2H)=,D17.10) v

192 480 CONTINUE
193 490 IF(hI)1110,530,500
194 500 DO 520 IK=1,N1
195 READ(5,380)N,X V
196 H(N)=X
197 PRINT 510,N,HN)
198 510 FORMAT(1X,2HH(,13,2H)=,D17.10)
199 520 CONTINUE
200 530 B=3.141592636*BETA*FREQ/(C*C)
201 C
202 C CALCULATE MATRIX ELEMENTS
203 C
204 DO 550 IL=2,J
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205 IL1=IL-1
206 DO 540 IM=1,1Ll
207 X11AILIM)=EEXPUALPHA(IL)-ALPHA(IM)-ALPHA(IL-IM))*DXI)
208 Xl(IL,IM)- l.D0
209 540 CONTINUE

210 550 CONTINUE
211 IFX=J-1
212 riO 570 IN=1,IFX
213 IN1=J-IN
2114 DIO 560 IF=1,IN1
215 X22(INIFI=DEXF((ALPHA(IN)-ALPHA(IP)-ALPHA(IN+IP))*DXI)
216 X2(INtIF')=1.DO
217 560 CONTINUE
218 570 CONTINUE 11
2119 DO 580 IQ=1,J
220 GH( IQ)=DEXP(-ALPHA(IQ)*DXI)
221 580 CONTINUE
222 C
223 C SET COUNTER

224 C
225 RN=RO
226 R=RN
227 DX=DXI
228 PD=IP*EIX
229 F11l.DO
230 590 CB=DX*B
231 C
232 C FILL ARRAYSa
233 C
234 DO 600 IR=1,J
235 G2(IR)=G(IR)
236 H2(IR)=H(IR).
237 DG(IR)=0J0
238 DH(IR)=.ti0

239 600 CONTINUE

241 C ENTER LOOP FOR CALCULATING FIRST DERIVATIVE
242 C
243 DIO 620 IS=2,J
244 DO 610 IT1,YIFX
245 CX=CB*IT*X(ISYIT)
246 DG(IS)=CX*(G2(IS-IT)*G2(IT)-H2(IS-IT)*H2(IT) )+DG(IS)
2147 DH(IS)=CX*(H2(XS-IT)*G2( IT)+G2(IS-IT)*H2(IT) )+DH( IS)
248 610 CONTINUE
249 620 CONTINUE
250 DIO 640 IU=19J
25 1 DO 630 IV=1,IFX
252 CX=CB*IUI*X2(IU,IV)
253 DG( IU)=EIG( IU)-CX*(G2( IU+IV)*G2( IV)+H2( IU+IV)*H2( IV))
254 E'H( IU)=DH( IU)+CX*(G2( IU+IV)*H2( IV)-H2( IU+IY)*G2( IV))
255 630 CONTINUE
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256 640 CONTINUE
257 C
258 C CALCULATE NEW AMPLITUDES FOR SECOND DERIVATIVE
25 C
260 DO 650 IW=I,J
261 G2(IW)=G(IW)+DG(IW)
262 H2(IW)=H(IW)+DH(IW)
263 DGI(IW)=O.DO
264 DHI(IW)=O.DO
265 650 CONTINUE
266 C
267 C FIND LAST FIVE NON-ZERO HARMONICS
268 C
269 DO 655 IW1=1,5
270 KG(IWI)=O 3
271 KH(IW1)=O
272 655 CONTINUE
273 DO 710 IX=I,.J

274 IF(G2(IX))660,680,660
275 660 DO 670 IY=1,4
276 KG(IY)=KG(IY+I)
277 670 CONTINUE
278 KG(5)=IX
279 680 IF(H2(IX))690,710v690
280 690 DO 700 IZ=l,4
281 KH(IZ)=KH(IZ+I)
282 700 CONTINUE
2'83 KH(5)=IX
284 710 CONTINUE
25 CJA
286 C INSURE THAT THE LAST FIVE HARMONICS ARE NOT
287 C PROGRESSIVELY LARGER
288 C
289 DO 720 JA=t,4
290 JB=KG(JA)
291 IF(JB)712,720,712
292 712 Z=DABS(G2(JB))
293 JC=KG(JA+I)
294 IF(JC)714,720,714
295 714 ZI=[ABS(G2(JC))
296 IF(Z1.LT.Z)GO TO 720
297 G2(JC)=0.95 2(.,C)*Z/ZI
298 720 CONTINUE

299 DO 730 JD=1,4
300 JE::KH(JD) TV
301 IF(JE)722,7309722
302 722 Z=DABS(H2(JE))
303 JF=KH(JD+I)
304 IF(JF),24,p730,724
305 724 ZI=DABS(H2(JF))

306 IF(ZI.LT.Z)GO TO 730

C



307 H2(JF)=0.95*H2(JF)*Z/Zl

308 730 CONTINUE

312 Fl=RN/R)05
313 CB=DX*Et*Fl

317 C
318 C ENTER LOOP FOR CALCULATING SECOND DERIVATIVE
319 C
320 760 DO 780 JG=29J
321 DO 770 JH1,PIFX

L322 CX=CB*JH*Xll(JGYJH)
323 G1(J)=C*(62(JG-JH)*G(JH)- 2(JG-JH)*H2(JH) )+DG1(JG)

324 D'H1(JG)=CX*(H2(JG-JH)*G2(JH)+G2(JG-JH)*H2(JH) )+DH1(JG)
325 770 CONTINUEA
326 780 CONTINUE
327 Do 800 JI=1?J
328 DO 790 JJ1,YIFX
329 CX=CB*JI*X22(JIYJJ)
330 DG1(JI)=DG1UJI)-CX*(G2(JI+JJ)*G2(JJ)+H2(JI+JJ)*H2(JJ))

331 DH1(JI)=DH1(JI)+CX*(62(JI+JJ)*H2(JJ)-H2(JI+JJ)*02(JJ))
332 790 CONTINUE
333 800 CONTINUE
334 C
335 C CALCULATE NEW AMPLITUDES
336 C
337 DO 810 JK=1.-J
338 G(JK)=G(JK)+O.5*(DG(JK)+DG1(JK)) i
339 H(JK)=H(JK)+.*(tH(J'i+DH1 (JK))
340 810 CONTINUE
341 Ct
342 C FIND LAST FIVE NON-ZERO HARMONICS
343 C
344 DO 820 JL=1,5
345 KG(JL)=O

346 KH(JL)=0
347 820 CONTINUE
348 DO 880 JM=1,J
349 IF(G(Jrl))830p8150?830
350 830 DO 8140 JN=1,4
351 KG(JN)=KG(JtI+l)

I-352 840 CONTINUE
353 NG(5)=JM
354 850 IF(H(JM))860?880v860
355 860 DO 870 .O=1,4
356 KH(JO)=KH(JD+1)
357 870 CONTINUE

go - -- - - -- t



358 IKH(5J)=Jh 2
3 59 830 CONTINUE
360 C
361 C INSURE THAT THE LAST FIVE HARMONICS ARE NOT PROGRESSIVELY LARGER
362 Cm
363 ['0 890 JF=lv4 S
364 JO=l'G(JF')
365 IF(J0)882v890,882
366 882 Z=LAES(G(JQ))4r
367 JR=\G (.JP+ 1
368 IF(JR)884,890t884
369 884 Z1DPABS(G(JR))
370 IF(Zl.LT.Z)GO TO 890
371 G(JR)=0.95*G(JR)*Z/Z1
372 890 CONTINUE
373 [DO 900 JS=194 S
374 JT=KH(JS)
375 IF(JT)992v900v892
376 892 Z=DABS(H(JT))
377 JU=I'H(JS+l) m
378 IF(JU)894,900,894m
379 894 Zl=[IAES(H(JU))A
380 IF(ZI.LT.Z)GO TO 900 -i

381 H(Jt))=0.95*H(JU)*Z/Zl
3382 900 CONTINUE

384 C CHECK FOR OUTPUI DISTANCE Z

386 905 IF((R-FRO)-PD)l0l0p95Op910
3878
388 C INTERPOLATE OUTPUT

389 C2=
390 910 Y[i'X-UF:-RO)-PE')
391 DO 920 JV=ltNI M
392 G2(JV)=c62(JV)-t'G(JV)+0.5*(ElG(JV)+DGI(JV) )*Y/DX
393 H2(JV)=H2(JV)-iJH(JV)+0.5*(DH(JV)+DI(JV) )*Y/DJ
394 920 CONTINUE
395 X=FI
396 IF(1A-0.5)940.925.930
397 925 X=(RN/(RN+Y))**0.3
398 60 TO 940
399 930 X=R/(R(N+YT)
400 940 DO 94) JV1=JNI
401 xL(JVI)=X*G2(JV1IELIEXP(-ALPHA(JVI)fl)/E
402 XLI(JVI)=X*H2(.JVI)*bEXP(-ALPHA(JVI)*Y)/EAl
4035 945 CONTINUE~
404 G0 TO 965
405 ?50 00 960 JX=IYNf
406 Xl-(jX)--r1*G(JX)*(;H(JX)/E
407 XL1 (JX)=FI*H'J)X)VGH(JX)/E
408 960 CONTINUE
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409 965 PRINT 970YPI
410 970 FORMAT(5Xv9HDISTANCE=9D17.10)A
411 PRINT 980
412 980 FORMAT('SXv3HSINp20Xt3HCOS)
413 Do 1000 JY=1,NI
414 PRINT 99OvJYtXL(JY)tXL1(JY)
415 990 FORMAT(1X,14,4XDl7.10,5XE'17.10)

11416 1000 CONTINUE
*417 FIJ=PD+IP*DXI

418 GO TO 905
419 C
420 C CHECK STEP SIZE

4 2 1010 N=O J )) 0 0 10 0 1 2

426 1020 Z=Z+DABS(0.5*((D'S(J1)+DlG1(J1))/G(J1)))
427 N=N+1
428 1030 IF(H(J1))104091050?1040
429 1040 Z=Z+DABS(0.5*(tIH(J1)+E'H1(Jl))/H(J1))

430 N=N+1
431 1050 CONTINUE

433 C MODIFY WAVEFORM
434 C

436 G(J2)=G(J2)*F1*GH(J2)
437 H(J2)=H(J2)*F1*GH(J2)
438 1060 CONTINUE
439 IF(Z.GT.(N*0.005))GO TO 1100

440 C
441 C DOUBLE STEP SIZE
442 C
443 DX=2.0*DX
444 DO 1070 J2=1,J[i445 GH(J2))=GH(J2)*GH(J2)
446 1070 CONTINUE
447 DO 1090 J31vtJ
448 DO 1080 J4=1 9J9449 X11(J3,J4)=X1I(J3 7-J4)*X11 (J3,J4)II450 X22(J3,J4)=X-2( J31 J4)*X22(J3,J4)
451 1080 CONTINUE
452 1090 CONTINUE
45-3 PRIUT 11069DX
454 1106 FORMAT(1Xt3HDX=9Dl7o10)

455 1100 RN=R

457 1110 STO)PI458 END



APPENDIX B

SAMPLE OUTPUT FROM FAW

FREQUENCY= 0.3000000000D 03
SOUND SPEED= 0.1500000000D 04
BETA= 0.3500000000D 01
NORMALIZATION CONSTANT= 0.6670000000D-01
INITIAL STEP SIZE= 0.1000000000D 02
MAXIMUM DISTANCE= 0.1000000000D 05
SOURCE SIZE= O.OOOOOOOOOOD 00
SPREADING FACTOR= 0.00 i
ABSORPTION FLAG= 0
NUMBER OF HARMONICS= 40
INITIAL G COEFFICIENTS= 1
INITIAL H COEFFICIENTS= 0
NUMBER OF HARMONICS OUTPUT= 5
PRINT OUT INTERVAL= 100
ALPHA(1)= 0.1120000000D-05
NUMBER OF MODIFIED ABSORPTION COEFFICIENTS= 0
INPUT WAVEFORM

G( 1)= 0.6670000000D-01
DISTANCE= 0.1000000000D 04
SIN COS
1 0.9941231144D 00 0.0000000000D 00
2 0.9622622120D-01 0.00000000001 00
3 0.1394984526D-01 0.0000000000D 00
4 0.2394449333D-02 0.O000000000D 00
J 0.4511965196D-03 O.00000000011 00
DISTANCE= 0.2000000000D 04
SIN COS
1 0.9788882494D 00 O.000000000D 00
2 0.1845999987D 00 .000000000)D 00
3 0.5197039094D-01 .000000000)D 00
4 0.1729678606D--01 0.0000000000D 00
5 0.6313700593D-02 .000000000)D 00
DISTANCE= 0.3000000000D 04
SIN COS
1 0.9546672934D 00 .000000000)D 00

2 0.2587699767D 00 O.000000000D 00
3 0,1041698315D 00 0.O000000000D 00
4 0.4945203382D-01 0.OOOOOOOOOO1 00

0.15709949110-01 0.00000000001 00
DX= 0.2000000000D 02

DISTANCE= 0.4000000000D 04
SIN Cos
1 0.9220214992D 00 .000000000)D 00
2 0.3138414940D 00 O.0000000000 00
3 0*1574155764D 00 0000000000D 00

0.9275848905D-01 0.0000000000)0 00

5 0.5972644773D-01 0.00000000001 00
DX= 0.4000000000D 02

!v!



DISTANCE= 0.5000000000 04
SIN COS
1 0.8817469738D 00 O.O000000000D 00
2 0.34690482481D 00 O.c'OOOOO0D O00
3 0.1988133777D 00 O.O000000000D 00
4 0.13306357721D 00 0.00000000001) 00
5 0.9695954537D-01 O.O000000000D 00

DX= 0.3000000000D, 02
DISTANCE= 0.6000j00000D 04
SIN Cos
1 0.8353073629D 00 0.O000000000D 00
2 0.3581480161D 00 O.O000000000D 00 0
3 0.22020568081) 00 0.00000000000D 00
4 0.1567515441D 00 0.00000000001) 00
5 0.1208128685D 00 0.00000000001 00

DX= 0.1600000000P 03
DISTANCE= 0.7000000000D 04

SIN COS1 0.78636354951D 00 O.O000000000D 00

2 0.3538678457D 00 0.0000000000D 00

3 0.2247481885'D 00 0.000000000011 004 0.1638955398[ 00 0.00000000001) 005 0.12878692231D 00 O.O000000000D 00
DX= 0.3200000000D' 03

DISTANCE= 0.8000000000D 04
SIN COS
1 0.738935130211 00 0.0000000000D 00 00
2 0.34231987871D 00 0.0000000000D 00
3 0.22103348636D 00 0.000000000D 00
4 0.16292265481D 00 0.0000000000D 00
5 0.1290571601D 00 O.O000000000D 00
DISTANCE= 0.9000000000D 04 I
SIN COS I

I 0.694735733D 00 O.O000000000D 00
2 0.32794109021) 00 0.0000000000' 00
3 0.2137387066D 00 0 0000000000 00
4 0.1583862311D 00 O.O000000000D0 00
5 0.1259628330D 00 0.0000000000D 00
DISTANCE= 0.1000000000D' 05

SIN Cos
1 0.6542737913D' 00 0,00000000001' 00

0.3128153020D' 00 0.00000000001' 00
3 0.2050573568P' 00 0.oooooooooo1) 00
4 0.1523-8922581) 00 0.0000000000' 00

5 0.1214645359D 00 0.00000000001' 00
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